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The stochastic cellular automaton of rule 18 defined by S. Wolfram [Rev. Mod. Phys. 55, 601
(1983)] has been investigated by the enhanced coherent anomaly method. A reliable estimate was
found for the 3 critical exponent, based on moderate sized (n < 7) clusters.

PACS number(s): 05.40.+j, 64.60.—i

Calculating critical exponents of second order phase
transitions is a challenging problem. For nonequilib-
rium systems, generalization of equilibrium statistical
physics methods is under developement. Among the
most notable analytical tools are series expansion [1],
transfer matrix diagonalization [2], and the mean-field
renormalization-group method [3].

In a series of earlier papers [4-6], we have shown how
the generalization of the mean-field technique with ap-
propriate extrapolation can be used to describe the crit-
ical properties of cellular automata (CA) phase transi-
tions.

The generalized mean-field approximation (GMF) first
proposed for dynamical systems by Gutowitcz et al. [7]
and Dickman [8] is shown to converge slowly at critical-
ity. In this method we set up equations for the steady
state of the system based on n-point block probabilities.
Correlations with a range greater than n are neglected.
By increasing n from 1 (traditional mean field) step by
step we take into account more and more correlations and
get better approximations. The GMF approximation can
be used as a basis of a coherent anomaly method (CAM)
calculation, and it gives a reasonably good (3 exponent
for a dynamical system with large n (>10) [9]. In this
Brief Report I show how an improved version of the CAM
proposed very recently [10] works on cellular automata.

The essence of the CAM [11] is that the solution for
singular quantities at a given (n) level of approximation
[@ ()] in the vicinity of the critical point is the prod-
uct -of the classical singular behavior multiplied by an
anomaly factor [a(n)], which becomes anomalously large
as n — oo (and p? — p.):

Qn ~ a(n)(p/p7 — 1)*, (1)

where p is the control parameter and wg; is the classi-
cal critical index. The divergence of this anomaly factor
scales as

a(n) ~ (pg — pc)“ ™, (2)

thereby permitting the estimation of the true critical ex-
ponent w, given a set of GMF approximation solutions.
However, such an estimation depends to some extent on
the choice of the independent parameter (p <> 1/p). To
avoid this a corrected CAM was proposed [10], based on
a new parameter,
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8n = (pc/P2)? — (W2 /Pe)Y?, ®3)

such that Eq.(3) is invariant under p + p~!. This
parametrization gives better estimates for the critical ex-
ponents of the three-dimensional Ising model [10].

My target system for this kind of calculation was the
one-dimensional, stochastic rule 18 CA [12]. This range-
1 cellular automaton rule generates a 1 at time ¢ only
when the right or the left neighbor was 1 at ¢t — 1:

t—1: 100 001
t: 1 1

with probability p. In any other case the cell becomes
0 at time t. The order parameter is the concentration
(c) of 1s. For p < p. the system evolves to an absorbing
state (c = 0). For p > p. a finite concentration steady
state appears with a continuous phase transition. This
transition is known to belong to the universality class of
directed percolation (DP) [13]. At t — oo the steady
state can be built up from 00 and 01 blocks [14]. This
permits one to map it onto stochastic rule 6/16 CA with
the new variables 01 — 1 and 00 — O:

t—1: 00 01 10 11
t: 0 1 1 0

and the GMF equations can be set up by means of pair
variables. In an earlier work [4] this was performed up
to the order n = 6, and Padé extrapolation was applied
to the results. Our best estimate for critical data was
pe = 0.7986 and § = 0.29.

Now, I have extended the GMF calculations up to
n = 7 (see Table I) with the help of the symbolic

TABLE 1. GMF calculation results for pair approximation
data.

n pZ a(n)

1 0.5000 0.5000
2 0.6666 1.5000
3 0.7094 2.3484
4 0.7413 2.8816
5 0.7543 3.5345
6 0.7656 4.2545
7 0.7729 4.8463
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FIG. 1. Result obtained by applying the improved CAM
method on n-pair (n = 1,...,7) approximation data. The
logarithm of the anomaly coefficient a(n) is plotted versus the
logarithm of the improved independent variable §,.. Fitting
was done according to Eq. (4).

MATHEMATICA software. This required the setting up
and solution of a set of nonlinear equations of 72 vari-
ables. I obtained p? = 0.7729, which is still 5% off the re-
sult obtained by steady state simulation, p. = 0.8086(2)
[15] or from the more accurate time dependent simulation
data, p. = 0.8094(2) [16].

The CAM analysis of [a(n), d,] data was done, taking
into account the correction term

a(n) = b §8Pa 4 ¢ §A—Patl (4)

and examining the stability of the solution by omitting
different points from the (n =1,...,7) data set. For the
fitting 3. = 1 and p. = 0.8094 were used. As was pointed
out in Ref. [10] the CAM data may contain departures
from ideal scaling; moreover, there is no clear dependence
on the order of the approximations. I found relatively
stable estimates using the correction formula (4) on the
data set with the omission of the n = 3 point. The
n = 3 approximation result does not fit into the In(4,)-
In[a(n)] curve either (see Fig. 1). Table II shows the
stability of the results, with the mean 8 = 0.2796(2)
calculated from them. This compares very well with the
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TABLE II. CAM calculation results for pair approximation
data.

Data J¢]
1-2-4-5 0.273
1-2-4-5-6 0.271
1-2-4-5-6-7 0.282
1-2-4-5-7 0.285
1-2-4-6-7 0.275
1-2-5-6-7 0.310
1-4-5-6-7 0.275
2-4-5-6-7 0.266
Mean 0.2796(2)
Padé extrapolation, Ref. [4] 0.29
Simulation, Ref. [15] 0.285(5)
Series expansion for DP, Ref. [1] 0.2769(2)

value 8 = 0.2769(2) obtained by Dickman and Jensen [1]
from series expansion. For the CAM calculation based
on p or 1/p independent variables the results differ by
40.005 from the present enhanced version 3 estimates.

Another critical model with non-DP universality, the
nonequilibrium kinetic Ising model, has been examined
with the enhanced CAM method, and the 8 exponent
estimate is in agreement with the simulation results [17].

The conclusion of this study is that the enhanced
version CAM method with careful data analysis gives
good estimates for the critical exponent for moderate
n < 10 level GMF approximations. Calculation of the
n =15,6,7,... GMF approximations is possible on mod-
erate sized workstations. The solution of the n = 7 level
approximation took about 10 h CPU time on a SUN
Sparc-10 computer. This provides an efficient analytical
tool for exploring universalities of nonequilibrium sys-
tems.
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